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Abstract. Equations are derived to calculate the water waves radiation at infinity by a submerged source undergoing
large amplitude motion. These equations do not require the full solution of the velocity potential itself, as
demonstrated by a number of two- and three-dimensional examples. The results obtained are used to derive a far
field equation for calculating the steady force (the drift force) on a submerged body undergoing large amplitude
motion. It is concluded that the equations derived are useful to cases such as a deeply submerged body for which the
source distribution may be taken as those obtained in an unbounded fluid domain.

1. Introduction

There exist many mathematical identities between various physical parameters in marine
hydrodynamics. For the fully linearized velocity potential theory the most well known may
be the Haskind relation [1], which relates the exciting force due to wave diffraction of an
incoming wave to the radiated wave due to body oscillation. Other well known identities are
that between wave reflection and wave transmission [2], and that between the radiated wave
and diffracted wave [3]. These identities not only provide a better understanding of physical
problem but also enable us to obtain some results without solving the corresponding
problem.

For the second order velocity potential theory, various equations have been derived to
obtain the desired results without the solution of the second order potential. Lighthill [4] and
Molin [5] derived equations in the infinite and the finite water depth, respectively, which
calculate the second order diffraction force on the body from the first order potential alone.
Their equations were modified by Wu and Eatock Taylor [6] for the two-dimensional case,
which has a contribution from infinity. Further equations were derived by Eatock Taylor et
al. [7] to calculate the second order pressure on the body surface and Wu [8] to calculate the
second order wave reflection and transmission by a two-dimensional horizontal cylinder.

A common feature in these derivations is that all of them use the Green's identity which
relates to integration over a surface to that over the volume enclosed by this surface. Since
the potential satisfies the Laplace equation in the fluid domain, it is then possible to relate
the integration of two potentials (either physical or artificial) over the part of the surface to
that over the rest of the surface. Evidently, such a principle can be applied to many other
cases in marine hydrodynamics. Here we shall consider the problem of wave radiation by a
submerged hydrodynamic source undergoing large amplitude motion. We shall take into
account not only the variation of the source strength but also that of its position, provided
these variations have the same period. We shall assume that the disturbance on the free
surface remains small and linearization of the free surface boundary condition can still be
adopted. Such a mathematical model has been used in several occasions [9-12]. Here we
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shall show that to obtain the radiated wave by a submerged source there is no need to obtain
the potential itself following the principle discussed above. We shall consider three examples:
(1) a two-dimensional source in open water, (2) a three-dimensional source in a channel, (3)
a three-dimensional source in the open water. The results obtained are then used to derive
far field equations for drift forces on a submerged body in these cases.

For most practical bodies, the source distribution is unknown. Its solution requires that of
the corresponding Green function. This means the above results cannot be directly used. In
many cases, however, the source distribution can be obtained by some approximate method,
especially for a slender body or a deeply submerged body. It is known in the fully linearized
problem that when far field equations are used the source distribution obtained in an
unbounded fluid domain can be adopted for a deeply submerged body. The results are
usually quite satisfactory. On the other hand, for a deeply submerged body undergoing large
amplitude motion, the non-linearity due to the change its position may have to be taken into
account but the disturbance on the free surface remains small and the linearized boundary
condition still applies. Thus, in these cases, the equations obtained in this paper are
particularly useful.

2. The two-dimensional source

We define a coordinate system o - xz so that the origin is located on the undisturbed free
surface and z points upwards. We consider the problem of a submerged source oscillating
periodically with mean position at (x0, z 0 ). Based on assumption of the ideal flow, the
velocity potential 4 satisfies the following governing equation and the boundary conditions

V2 = (t) 6[x - x0 + f(t)] 6[z - z0 +f2(t)] (1)

in the whole fluid domain R, where o(t) is the strength of the source and 6(x) is the Delta
function;

a2P ao

Ot2 + g = 0

on the free surface SF or z = 0 and

= 0 (3)az

on the bottom of the fluid SB or z = -d. The radiation conditions at x = +co require that
waves propagate outwards. We assume that or(t), f(t) and f2 (t) in equation (1) are of the
same period T and the potential has become a periodic function of time in the entire fluid
domain. We shall not attempt to consider the transient motion, because unless time tends to
infinity the fluid at x = +x is not disturbed and there is no wave there. For the periodic
motion, we may write the asymptotical expansion of the potential at x= +o as

cosh[km(z + d)]
m-0 cosh kmd [Am cos(kmx + mwt) + Bm sin(kmx + mot)] + u+x, x +-x (4)

m=0 cosh kd

where
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co = T/21r (5a)

km tanh(kmd) = (mco) 2 /g (5b)

The velocity potential satisfying the above equations may be solved using the method for a
submerged circular cylinder undergoing large amplitude motion [12]. Here we shall show
that to obtain the coefficients in equation (4), there is no need to obtain the potential itself.

ua and u_ in equation (4) are related to the 'blockage' of the two-dimensional free surface
flow with finite depth [13]. Using Gauss' theorem, we have

an dS = V24 dR

where n is the normal of S pointing out of the fluid domain, S = SF + SB + S and S,
comprises two vertical lines at x = +-o. From equations (1), (2) and (3), we obtain

g JSF (tt dS + f a- dR = o'(t)

integrating both sides of the equation with respect to t from 0 to T and using equations (4),
we have

1 fT
u+ - u_ = r(t) dt . (6)

This shows that if there is no net flow from the source, u = u
For the other coefficients, we only consider m > 0 because only these terms will generate

waves. We define

t+ = cosh[km(z + d)] sin(kmx + mat) (7)

which satisfies the Laplace equation, free surface and bottom boundary conditions. Using
Green's identity, we have

s (i a - a n ) dS = V2> dR.

From equation (1) and boundary conditions on 4 and ¢, we obtain

10 f -+ > ) q dS + ( 04> dS_ 
g at Jf( at , -at' + JS an an an

= Or(t) cosh{km[d + zo - f3 (t)]} sin{km[xo - ft(t)] - mot} .

Integrating both sides with respect to t from 0 to T and using equations (4) and (7), we
obtain

4 cosh kmd T

Am;k =orT(2km[d + z -f(t)J sin{km[xo -hf(t)] + moot} dt.

(8)

Similarly if we define
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I+ = cosh[km(z + d)] cos(kmx - mwt) (9)

and follow the procedure above, we obtain

4 cosh k,d T

T(2kmd sinh 2kd) o-(t) cosh{kj[d + z o, -f3 (t)]} cos{k,[x,, -f(t)] + mwt} dt.

(10)

3. A three dimensional source in a channel

We now consider the problem of a source in a channel with depth d, width b and infinite
length. The coordinate system o - xyz is defined so that x is in the longitudinal direction, z
points upwards and origin is located on the free surface and the centre of the channel. The
potential due to a source at (x o, yO, zO) satisfies the following equations

V24 = or(t) 5[x - xO + f,(t)] 5[y - yo +f2 (t)] S[z - z + f3 (t)] (11)

in the fluid domain R;

a20 ao-at+ g az =0 (12)

on the free surface z = 0;

-0 (13)Oz

on the bottom of the channel z = -d and

- = 0 (14)
ay

on the sides of the channel Sw or y = -b/2. At x = , the potential may be written as

-: E; E cosh[kmO( + d) Y {A, cos[x k2m - (nrT/b)2 mcot]
m= - cosh kid b

+ Bm,, sin[x/k -(n-r/b)2 mwt]} + u+x, x- +-+ (15)

where the upper limit of n is determined by kmblrr and km is given in equation (5b). For the
fully linearized problem (it has only the term of m = 1), it is well known that no wave will
propagate to infinity when o < (iglb). In the present case, there are always waves at
infinity (those terms with m > rgl(bw 2), although the waves may be too small to have
practical significance if o is small.

To obtain the relationship between u+ and u_, we use

T " dS dt = V2 0 dR dt.

This gives
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T
u+ -u = bd -a(t) dt. (16)

To obtain the other coefficients in equation (15), the procedure used previously may be
followed. If we define

+ = cosh[km(z + d)] cos -b (y + sin[xVk - (nr/b)2 + mwt] (17)

and use Green's identity, we have

4km cosh kd T

A ,,(t) coshk[d + z -f
Tbenkm - (nrlb)2 (2kmd + sinh 2kmd) ) osh + 

{ b [ 2 +Y - 2 (t)] I sin{[x - fl(t)]k - (nrlb)2 mwt]} (18)

where e0 = 1 and E, = 1/2 if n > O0. Similarly if we define

= cosh[km(z + d)] cos -b (y + cos[xNk - (nrl/b) 2 - mcot] (19)

we obtain

Tbrnkm -(n rl/blb2 )(2kmd + sinh 2kmd) sh[d + 

x cos [ + -f 2 (t)] cos{[xO -_f(t)]/k - (n/lb)2 mt]} (20)

4. A three-dimensional source in the open sea

The problem under consideration now satisfies equations (11)-(13). A similar case has been
considered by Clement and Ferrant [14]. They obtained the solution of the Green function
for a source undergoing heave motion. In the present case, motion is not limited to heave.
The expansion at infinity may be written as

cosh[km(z + d)] 1 sin(kr - mt), r
cosh k d )] k[A(O)cos(k r-mmwt)+B(O)sin(kmr-mwt)], r

(21)

where the polar coordinate system (r, 0) is defined as

x = r cos 0 , y = r sin 0 . (22)

A distinctive feature of this problem is that the potential tends to zero at infinity. Thus, the
corresponding wave elevation itself at r = - is of little practical interest. However, the values
of A(O) and B(O) are important. For example, they can be used in the fully linearized wave
radiation and wave diffraction problem to calculate the wave damping coefficients and
exciting forces.
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We define

¢ = cosh km(z + d) sin[kmr cos(O - /3) - mot + 7r/4] . (23)

As before, the Green's identity gives

r[i - 1a] dO dz dt = T (t) cosh(km[d + zo -f 3(t)]}
o f-d [ Or - r r-- 0

x sin[kmro cos(00 - p) - kmfl(t) cos p/3 - kmf 2(t) sin /3 - mcot + 7r/4] dt (24)

where ro and 00 are obtained from equation (22) with x and y being replaced by xO and yo.
Using equations (21) and (23), the left-hand side of above equation L becomes

cosh kd fd cosh2 km(z + d) f
x (Am(O){sin[kmr cos(O -/3) - mwt] sin(kmr - mot)

+ cos( - /3) cos[kmr cos(O - /3) - mcot + 7r/4] cos(kmr - mot)}

- Bm( ){sin[kmr cos( - /3) - mot] cos(kmr - mwt)

- cos(O - /) cos[kmr cos( - /3) - mwt + 7r/4] sin(kmr - mwt)} ) dt dO dz

= - k cosh 2 km(z + d) Am(H)(cos{kmr[ - cos(O -,/3)] -7r/4}cosh kd d

- Bm(O) sin{kmr[l - cos(O - /3) - 7r/4}) - [1 + cos(O -,/3)] dO dz, r--- o.

The integration with respect to 0 may be performed by using the stationary phase method
[15]. It gives

F(O) exp{ikmr[l -cos( -/3)1 iirl4/4}[1 + cos(0 - /3)] d-->2F(3) , r.

Thus

L = -A (/3)rT 2kmd + sinh 2kmd
4km cosh kmd

Substituting this into equation (24), we obtain

Am(/3) = (2kd +nh4k cosh kid T {k) sh [d + zo -f3(t)])
(2kmd + sinh 2kmd)TV29TJ0

x sin[kmro cos(0O - /3) - kmf,(t) cos /3 - kmf 2 (t) sin /3 - mot + 7r/4] dt. (25)

Similarly if we define

4 = cosh km(z + d) cos[kmr cos( - /3) - mwt + 7r/4] (26)

we obtain
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Bm(3) = (2 km coshkd T+ sinh 2kmd) r o- (t) Cosh{km[d + z0 -f 3(t)]}
(2kmd + sinh 2kmd)TV2; fo

x cos[kmro cos(00 - 3) - kmfi(t) cos 3 - kmf 2(t) sin 3 - mot + r/4] dt. (27)

We now apply the above result to a special case that a source of constant strength moving in
a circular path with a constant angular velocity w in a horizontal plane. We define

o(t)=o 0 , f,(t)=-acos(wt+ y), f 2(t)= -asin(wt+y), f 3(t)=x = = O=.

The velocity potential or the Green function of this case with d = has been obtained by
Havelock [16], which has been used by Wu and Eatock Taylor [17] for solving the problem of
a submerged sphere in a circular path. Substituting the above equation into (25) and (27)
and using [18]

exp(+iz cos 0) = E Jn(z) exp[in(O +± r/2)] (28)

where Jm(z) are Bessel functions, we obtain

4rokm cosh kmd cosh[km(d + zo)]Am(I3) = - 4abkm cosh kid cosh[km(d + z)J Jm(kma) sin[m(y - 3 + ir/2) + r/4], (29a)
(2knd + sinh 2kmd)Tr2T

4aok m cosh kid cosh[km(d + z)]
Bi(3) = (2kmd + sinh 2kmd)T\/ Jm(kma) cos[m(y - (3 + r/2) + ir/4]. (29b)(2k~d + sinh 2kd)TV29b

Substituting above equations into (21), we have

4rOkm cosh kmd cosh[km(d + z0)] 1

m=l (2kmd + sinh 2kmd)TV 2'- Jm(ka)

x sin[kmr + m(O - ot -/3)- mir/2 - ir/4] . (30)

Let d = o and o- = -4rr in this equation. We may compare the result with the asymptotical
expansion [17, eq. (29)] of Havelock's solution. It is easy to confirm that apart from different
notations having been used these two results are identical.

5. Applications

5.1. Far field equation for drift force

The equations derived above are asymptotical expansions of the potential due to a source at
infinity. The results are different from those of the fully linearized theory. In the present
case, the wave has an infinite number of components with frequencies n (n = 1, 2 .... ) in
contrast to a single component with frequency o in the linearized problem. Such a difference
has important implications to the equations for calculating the forces on a submerged body
undergoing large amplitude motions. In particular the far field equation for the drift force
has to be modified, as shown below.

The force on a submerged body may be obtained from the following equation [15]
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F -p T- On dS + pJ ( V -- VVn) dS (31)

where S is the body surface and p is the density of the fluid. The normal derivative of the
potential in this equation is usually known from the following rigid body surface boundary
condition

n =V-n, (32a)

V= U + x r, (32b)

where U, 1f and r are translational velocity, angular velocity of the body and position vector,
respectively. Using Stokes theorem, equation (31) may also be written as

p t. $ so n-dSn Vtp f -V(-V- * r))V4~n dS.

Use is made of the identity [19]

f Vq V4n dS = s a2n x dS

if aqilan = 0 on So, where nj and xj (j = 1, 2, 3) are components of n and r in x, y and z
directions, respectively. The equation for the force becomes

F -p ndS+ -O nj dS + f I n 2 
dt so fs, s· (t~.(\ an Oxi an x i qdS

d o o a2 
=-P dt sOn dS - p F+S an x j an d S.

We now only consider the horizontal forces (j = 1, 2). Substituting the free surface boundary
condition on the potential into this equation and integrating both sides with respect t from 0
to T, we obtain

hF.=-2T P Idtj~ an ax, an ax, () dS

in which the result has been divided by T. It should be noticed that for problem in the
channel this equation is applicable only when j = 1.

Similar equation can be derived for the moment about z on a three-dimensional body in
the open water. We have [15]

M -p b(n 2 x- ny) dS +p s (34)

Following the above derivation we obtain
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d f 1 s [n 1M z -pd f Oc(n2x- nly) dS + p j [(y x-y)- V( -V r)V(n 2x-nly)

+ O(V2n1 + Vln 2 )] dS

df 1 ans) a(y-p) 1
= -P t so (n2x- n y ) d S + 2 fs[ an (YOb x-x Oy ) - an ] dS

= -P t J (n 2 x - ny) dS-2 - [f an (YOX - an dS

where Vj (j = 1, 2, 3) are the components of V, in x, y and z directions, respectively. This
gives the mean drift moment

Mz =-2 Tp F [ (Y4x- y) dS. (35)

The above equations are valid for combined radiation and diffraction problem provided the
free surface boundary condition can be linearized. We first restrict our discussion to the case
without the incident wave. The asymptotic expansion of the potential at infinity can then be
obtained from the results in equations (4), (15) and (21), although the coefficients in these
equations are now due to a distribution of the source over the body surface rather than a
single source. Substituting these expansions into (33) and (35), we obtain

2 2 2kd \ +2 -2 -2
F = g P m 2 + 2k d)(Am

2 + Bm -A, -B 2 ) (36)

for the two-dimensional problem;

bw2 In m2 [k2- (nr/b)2] ( 2kmd +2 2 -2 -2
bn4ga ] ( + sinh2 k nmdI(An mn mnA mnBn)

(37)

for the problem in the channel and

1 \ 2kid +
4 tanh kmd (l sinh 2k d) [Am(O)] 2 + [Bm(O)] 2} cos 0 dO (38a)

1m=1 2kmd 

p nh 2kmd j
2 21

F2 =- tanh kd(l + sinh 2kd) {[Am(O)]2 + [Bm()] 2} sin dO (38b)

1 th inl 2-kmd f(
-4 Pm=ltanh k d kmdf 2 a aB(O) Bm( Am(O)

m=1 km sinh 2kmd Jo m

(38c)

in the open sea.
The above results are for the case in which no incoming wave exists. When there are

incoming waves, these results have to be modified using a similar derivation. Take the
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two-dimensional case as an example. If the potential due to the incoming wave can be
written as

o = cosh[km(z + d)] [C m cos(kmx + mot) + D sin(kmx + mot)
m=O cosh kd

+ Cm cos(kmx - mot) + Dm sin(kmx + mwt)] (39)

equation (36) becomes

= 2 2 2kmd)
4=--g p; m1 + sinh2kmd)

x (A +2 + B 2 A 2 - B, 2 + 2AmC m + 2BrDm - 2AC, - 2BD) . (40)

5.2. Results for a submerged ellipsoid in translational motion

To use above equations for a real body needs the solution of source distribution. For a
deeply submerged body it may be taken as solution in the infinite fluid domain. We shall
consider an ellipsoid as an example.

For a ellipsoid in translational oscillation in an unbounded fluid, the velocity potential can
be expanded as

= UO, + Vb 2 + Wb3 (41)

where U, V and W are velocities in x, y and z directions, respectively. The velocity potential
components may be written in the form [20]

2 0%
2 - aj dxj (42)

where

1 dE drl d4
j' = f f [ - )2 + (z -z_)2]1/2 (43a)

and

= f02 (43b)
aj = ala 2a3 f (a2 + A)[(a 2 + A)(a2 + A)(a + A)] 2 (43)

with a, (j = 1, 2, 3) being the semi-lengths of the three principal axes. The integration in
equation (43a) is over the volume of the ellipsoid. Since it is in oscillation, we may write

= x - fE(t), a = Yo -f2(t), = z0 - f3(t). (44)

Equation (43a) becomes

-y [~ 1 ||dxo dyo dzo

4 [(x- Xo + f)+(y _ yo +2)2 + (Z _ Z +f3)2]1/2
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It is now evident that equation (42) can be written as

2 1 0
2 - a 4-|JiJ axo0

[(X X + (y-Y +2) 2 + (Z _ Zo f3)2]1/2) dx0 dy dz (46)

This physical meaning of this equation is that the potential is represented by a distribution of
dipoles with constant strength over the volume of the ellipsoid. Thus, using equations (41),
(25) and (27), we obtain in deep water (d = o)

A m(() = 2-a S I f dxO dyO dzO exp[km(zo -f3)]

x (U cos / cos[kmro cos(Oo - ) - kmfl cos /3 - kf 2 sin /3 - mt + 7r/4]

+ V sin /3 cos[kmro cos(Oo - /) - kmfl cos / - kmf2 sin /3 - mwt + iT/4]

+ W sin[kmr o cos( 0O - p) - kmf 1 cos / - kmf 2 sin /3 - mwt + /4]) dt,

Bm~ =2 2y I2 2k dxO dy dO exp[km(zo-f3)]

x {-U cos /3 sin[kmro cos(O - /) - kmf 1 cos p - kmf2 sin /3 - mcot + r/4]

- V sin /3 sin[kmro cos(0O - /) - kmf, cos /3 - kmf 2 sin p - mot + rT/4]

+ W cos[kmro cos(0O -/3) - kmf1 cos - kmf2 sin/3 - mot + r/41) dt.

Using

U = -df/Idt, V= -df2/dt, W= -df 3 dt,

the above equation may also be written as

Am(/3) = -2--a T ff xodydzo Tof ( {exp[km(zo -f3)]

x sin[kmro cos( 0 O -/3) - kmf cos /3 - km 2 sin/3 - mot + 7r/4]) + mo

x exp[km(Zo -f3)] cos[kmro cos(0o - /3) - kmf cos / - kmf2 sin /3 - mot

+ l/4]) dt

2 2k-mmw f dxO dyO dzOT ep[km(zo -f3)]
2-7TV f' J fk

x cos[kmr o cos( O-/3) - kmf 1 cos /3 - kmf 2 sin/3 - mot + r/4] dt,

Bm(/P) = 2-a TVk Jy° dxO dyO dzO exp[km(z -f3)]

x sin[r ck cos k sin t + dt
x sin[kmr, cos(O -/3) - gf, cos - kf 2 sin3 - mot + 9r/4] dt.

Further from the result in the appendix, we have
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Am(P) T exp(-kmf 3 ) cos[kmf, cos /3 + kmf2 sin ,3 + mwt - Tr/4 ] dt, (47a)

Bm(p) =- QT exp(-kmf 3 ) sin[kmfi cos , + kmf 2 sin / + mct - rr/4] dt, (47b)

where

2
2 = - _a 4rala2Mmw exp(-kmh)

" 1 (kma 3)2n+l

n0 2n! [k a cos2 3 +asin 2/]n+ 3 /2 Jn+3/2 (kma COS2 + a2 sin 2 ) (48)

Let

fl =f cos y , f2 =f sin y .

Equations (47) may be written as

Am(3) - iBm(3) = Jo exp[-kmf3 + ikmf cos( -y) + imwJt - iir/4] dt.

Because of equations (28), this equation becomes

Am() -iBm(/) = Qm exp(-iiT/4) i v exp(ipl3)I(p, m) (49)
p=-m

where

1 f T

I(p, m) = J exp(-kmf3 - ipy + im t)J(kmf) dt. (50)

The above equations can be substituted into (38) to calculate the drift forces on a submerged
ellipsoid in translation. There is no restriction on the dimension of the ellipsoid, provided its
disturbance on the free surface is small. When it is slender, we need retain only the term of
n = 0 in equation (48) as adopted by Havelock [20] for a different problem.

When a = a2 = a3 = a, which represents a sphere, we may use [21]

(z/2)" (z/2) J +M(Z)
F(O + 1) o n! Jn

Equation (48) becomes

Qm = - 2VT2a mwokma exp(-kmh). (51)

Substituting these equations into (38), we obtain
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i2= - 2- P E QmE I(p, m)I*(p- 1,m), (52a)
m=l p=-o

o 2 -

MA = - 2 p*(p m(p,m)p, m). (52b)
ml mi p==-

When the sphere is in a circular motion in a horizontal plane, as defined by the following
equation

f3 = O, f= constant, y = ot,

equation (50) can be simplified as

I(p,m) {Jm(kmf) p=m (53)

This leads to

F, = F = 0, (54a)

7 o Q
2

=l mJm(kmf)

= -_4.24a6/g E m5 exp(-2kmh)J2(kmf). (54b)
m=l

For a sphere moving in a circular path, the tangential and radial forces do not change with
time in the coordinate system fixed on the body, when the steady state has been reached.
The mean moment about the centre of the circle should be equal to the tangential force
multiplied by the radius of the circle. This enables us to compare equation (54b) with Rf,
where R is the tangential force given in equation (12) of [16] (notice different notations have
been used here). The results can be seen identical.

6. Conclusions

A common feature in the derivation of various identities in the linearized and second-order
potential flow problems has been noticed. The method is then applied to calculate the wave
radiation by a submerged source, which does not require the full solution of problem. The
definition of 1 plays the crucial role. It was chosen as another radiation or diffraction
potential in the linearized problem so that some identities were established between one
radiation (or diffraction) and another. We notice that in this paper ¢1 is in fact an incident
potentials. When the Green's identity is used, the integration of the potentials over the
surface will cancel each other apart from where the radiation condition is not satisfied by ¢p
(in the two-dimensional case) or it is a stationary point of the integrand (in the three-
dimensional case). Evidently one can define an appropriate ¢F to obtain other results.
However, in some cases it may be more difficult to obtain 0i than to solve the original
problem. The conclusion therefore is that the method may be applicable only if ¢i can be
chosen as a known function or that having been previously obtained.
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The results obtained in this paper for an isolated source are useful to a real body if its
source distribution can be easily found. Thus, they are particularly effective for problems
related to slender bodies or deeply submerged bodies undergoing large amplitude motion, as
demonstrated by the example in the paper.

Appendix

To calculate the integral over the volume of the ellipsoid before equations (47), we consider
the following integral

= f f exp[kmz+i km(X cos y sinG)dx dydz

fal ~a 2 1-x
2

/a -h+a 3 1-x
2
/a2-y

2
/a2

J-a J l x2/a -h_a 3 V1-x 2/al2_y 2 a2 exp[kmZ + ikm(x cos + y sin 13) dx dy dz

j2 f- a 3l 1-x 
2 /a2 2/2a2

2 k exp(-kh) l , sinh kma31- x2/a
- y 2/a 2 exp[ikm( x cos l3

m mx- al-aa 21

+ y sin 13) dx dy

Let

x = air cos 0 y = a2r sin 

The above equation becomes

2ak exp(kmh) o o sinh[ka 3 - r 2] exp[ikmr/a 2 cos 23 + a2 sin2 3 cos O]r dO dr

- kiraa- 2 exp(-kmh) If sinh[kma3
1 ]Jo(kmria cos23 + a2 sin2 p)r dr

Replacing r with sin 0, we obtain

km exp(-kmh) J sinh(kma 3 cos O)Jo(km sin /a cos23 + a 2 sin2 ) sin cos 0 dO

47rala 2 I r/2

- km exp(-kmh) J J(km sin a~ cos2 3 + a. sin 2/3)

(kma3 )2n+ 
x ((2 )ma) sin 0 Cos2n+20 dO

n=0 (2n + 1)!

27rala 2 exp(-kmh)/2V 1 (kma3)2n+l

km n=O 2nn! [kma cos2 3 + a2 sin2 p)] n +3 '2

x Jn+3/2(km a2l cos 3 + a2 sin2 /3)

where equation (11.4.10) of [18] has been used.
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